翻訳と辞書
Words near each other
・ Bendik Hofseth
・ Bendik Riis
・ Bendik Rugaas
・ Bendik Singers
・ Bendiks H. Arnesen
・ Bendiksen
・ Bendin' in the Wind
・ Bendinat
・ Bending
・ Bending (disambiguation)
・ Bending (metalworking)
・ Bending All the Rules
・ Bending Bridges
・ Bending machine
・ Bending machine (manufacturing)
Bending moment
・ Bending of plates
・ Bending Science
・ Bending stiffness
・ Bending the Landscape
・ Bending the Rules
・ Bendiocarb
・ Bendir
・ Bendire's thrasher
・ Bendis
・ Bendis (moth)
・ Bendish
・ Bendish (disambiguation)
・ Bendish baronets
・ Bendisodes


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Bending moment : ウィキペディア英語版
Bending moment

A bending moment is the reaction induced in a structural element when an external force or moment is applied to the element causing the element to bend.〔〔 The most common or simplest structural element subjected to bending moments is the beam. The example shows a beam which is simply supported at both ends. Simply supported means that each end of the beam can rotate, therefore each end support has no bending moment. The ends can only react to the shear load. Other beams can have both ends fixed, therefore each end support has both bending moment and shear reaction loads. Beams can also have one end fixed and one end simply supported. The simplest type of beam is the cantilever, which is fixed at one end and is free at the other end (neither simple or fixed). In reality, beam supports are usually neither absolutely fixed nor absolutely rotating freely.
The internal reaction loads in a cross-section of the structural element can be resolved into a resultant force and a resultant couple. For equilibrium, the moment created by external forces (and external moments) must be balanced by the couple induced by the internal loads. The resultant internal couple is called the bending moment while the resultant internal force is called the shear force (if it is transverse to the plane of element) or the normal force (if it is along the plane of the element).
The bending moment at a section through a structural element may be defined as "the sum of the moments about that section of all external forces acting to one side of that section". The forces and moments on either side of the section must be equal in order to counteract each other and maintain a state of equilibrium so the same bending moment will result from summing the moments, regardless of which side of the section is selected. If clockwise bending moments are taken as negative, then a negative bending moment within an element will cause "sagging", and a positive moment will cause "hogging". It is therefore clear that a point of zero bending moment within a beam is a point of contraflexure—that is the point of transition from hogging to sagging or vice versa.
Moments and torques are measured as a force multiplied by a distance so they have as unit newton-metres (N·m), or pound-foot or foot-pound (ft·lb). The concept of bending moment is very important in engineering (particularly in civil and mechanical engineering) and physics.
== Background ==
Tensile and compressive stresses increase proportionally with bending moment, but are also dependent on the second moment of area of the cross-section of a beam (that is, the shape of the cross-section, such as a circle, square or I-beam being common structural shapes). Failure in bending will occur when the bending moment is sufficient to induce tensile stresses greater than the yield stress of the material throughout the entire cross-section. In structural analysis, this bending failure is called a plastic hinge, since the full load carrying ability of the structural element is not reached until the full cross-section is past the yield stress. It is possible that failure of a structural element in shear may occur before failure in bending, however the mechanics of failure in shear and in bending are different.
Moments are calculated by multiplying the external vector forces (loads or reactions) by the vector distance at which they are applied. When analysing an entire element, it is sensible to calculate moments at both ends of the element, at the beginning, centre and end of any uniformly distributed loads, and directly underneath any point loads. Of course any "pin-joints" within a structure allow free rotation, and so zero moment occurs at these points as there is no way of transmitting turning forces from one side to the other.
It is more common to use the convention that a clockwise bending moment to the left of the point under consideration is taken as positive. This then corresponds to the second derivative of a function which, when positive, indicates a curvature that is 'lower at the centre' i.e. sagging. When defining moments and curvatures in this way calculus can be more readily used to find slopes and deflections.
Critical values within the beam are most commonly annotated using a bending moment diagram, where negative moments are plotted to scale above a horizontal line and positive below. Bending moment varies linearly over unloaded sections, and parabolically over uniformly loaded sections.
Engineering descriptions of the computation of bending moments can be confusing because of unexplained sign conventions and implicit assumptions. The descriptions below use vector mechanics to compute moments of force and bending moments in an attempt to explain, from first principles, why particular sign conventions are chosen.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Bending moment」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.